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A boundary variation method for the forward modeling of multi-layered

diffraction optics is presented. The approach enables for fast and high-order

accurate modeling of infinite periodic and finite aperiodic transmission optics,

consisting of an arbitrary number of materials and interfaces of general shape,

subject to plane wave illumination or, by solving a sequence of problems, il-

lumination by beams The key elements of the algorithm are discussed as are

details of an efficient implementation. Numerous comparisons with exact so-

lutions and highly accurate direct solutions confirms the accuracy, versatility,

and efficiency of the proposed method.

c© 2003 Optical Society of America

OCIS codes: 000.4430, 050.1970, 090.1970, 230.1950, 230.4170

1. Introduction

The ability to accurately and efficiently model multi-layered diffraction dominated

optics has numerous applications, i.e., modeling of integrated transmission optics,
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design and analysis of Bragg mirrors, and integrated cavities. Such methods would also

enable the modeling of random variations in design due to manufacturing limitations,

as well as serve as fast forward solvers in inversion as part of an quality control

process.

For binary periodic structures, the rigorous coupled-wave analysis has been widely

used to model such optical elements during the last decade.9 However, the need to

analyze structures with aperiodic non-binary features of finite extent and bean il-

lumination requires that alternatives be sought. This has lead to the development

of several alternative approaches, e.g., Finite-Element,14 Boundary element,12 Finite-

Difference Time-Domain,16 and Spectral Collocation.8,10,11 The latter two methods

both compute a direct solution of the time-domain vectorial Maxwell equations and

are very general in being adaptable to a wide variety of geometries and physical set-

tings. As the need to model problems of realistic size and complexity becomes more

pressing, however, the memory and computational time requirements of such direct

volume methods quickly becomes a limiting factor not only for the design process but

also for the analyses of particular structures.

In this work we take a different approach, building on the boundary variation

method proposed in.3,4, 5 These methods are founded on the observation that solu-

tions to electromagnetic diffraction by a periodic structure depend analytically on a

variation of the interface. In other words, diffraction from a smooth grating can be

determined from knowledge of reflection and refraction at a plane interface. Using this

result, fast and accurate high-order perturbation schemes for finite-size perturbations

have been developed for modeling of two- and three-dimensional metallic and trans-
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mission gratings3,4, 5 illuminated by plane waves. These methods were subsequently

extended to include problems illuminated by guided waves6,7 and verified extensively

by comparisons with direct high-order solution of Maxwell equations.

We continue the development of these methods by demonstrating the use of

the boundary variation methods in an iterative approach to accurately and efficiently

model multi-layered optics, e.g., transmission optics where it is essential to accurately

account for the internal reflections. To make this feasible, we discuss in some detail the

implementation which relies on properties of the scattering process to make it efficient.

The proposed algorithm is shown to perform well for period and nonperiodic problems

and results agrees very well with directly computed reference solutions, albeit obtained

a dramatically reduced computational cost.

What remains of this paper is organized as follows. In Sec. 2 we discuss the

basic setup and the essential details of the formulation. This sets the stage for Sec.

3 where we introduce the boundary variation method, first for a single interface and

subsequently for the general multiple interface problem. Key elements of an efficient

implementation is also discussed here. In Sec. 4 we offer a number of test cases to

illustrate the efficiency and capability of the proposed approach, while Sec. 5 concludes

with a few remarks and outlines future work.
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2. Problem Setup and Model

As illustrated in Fig. 1 we consider a two-dimensional situation in which a monochro-

matic plane wave




Einc(x, t)

H inc(x, t)


 =




AE

AH


 exp

[
i(kinc · x − ωt)

]
,

propagating in the homogeneous region, Ω0, impinges on a structure of multi-layered

non-magnetic homogeneous regions Ω1, . . . , ΩN , separated by the smooth periodic

interfaces, Γ1, . . . , ΓN , described by the functions, f 1(x), . . . , fN(x) For each region

Ωj we have the associated permittivities, εj. Furthermore, we have introduced the

complex amplitudes, AE and AH , for the electric and magnetic field, respectively,

while kinc signifies the wavevector of the incoming field, restricted to propagate in the

(x, y)-plane, i.e., kinc = (kinc
x , kinc

y ). Recall that

kinc =
2π

λv

√
ε0k̂

inc
, ω = 2π

cv

λv

.

Without loss of generality we can normalize length and time such that the vacuum

wavelength, λv = 1, and the vacuum speed of light is cv = 1.

The illumination of the structure generates the fields (Ej,Hj) in the region Ωj for

all j ∈ {0, 1, . . . .N}. Clearly, these fields satisfy the time-harmonic Maxwell equations

∇× Ej = iωHj , ∇× Hj = −iωεjEj , ∀j ∈ {0, 1, . . . .N} ,

under the constraint that the fields are solenoidal, i.e.,

∇ · Ej = ∇ · Hj = 0 ∀j ∈ {0, 1, . . . .N} .
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In Ω0, the total field is given as (Einc,H inc) + (E0,H0), i.e., in this case (Ej,Hj)

represents the scattered field while (Ej,Hj) signifies the total fields otherwise.

The fields in the homogeneous regions, Ωj−1, and Ωj are connected through the

boundary conditions along Γj for all j ∈ {1, . . . , N}. In particular, along the interface

Γj, endowed with an outward pointing normal vector, n̂j, separating the two di-

electric regions Ωj−1 and Ωj, continuity of the tangential field components requires

n̂j ×




Ej−1 + δj−1,0E
inc

Hj−1 + δj−1,0H
inc


 = n̂j ×




Ej

Hj


 .

In the special case where Γj is assumed to be a perfect conductor, this condition

degenerates to a Dirichlet condition on the electric field as

n̂j × Ej−1 = −n̂j × δj−1,0E
inc .

When solving Maxwell’s equation it is often advantageous to express the boundary

condition on Hj through the condition on Ej and Maxwell’s equations themselves as

a Neumann condition

n̂j ×∇×
(
Hj−1 + δj−1,0H

inc
)

= −n̂j · ∇
(
Hj−1 + δj−1,0H

inc
)

= −∂(Hj−1 + δj−1,0H
inc)

∂n̂j = 0 ,

along the perfectly conducting interface Γj.

To simplify matters further, we restrict ourselves to problems where Ωj can be

considered homogeneous and where the incoming fields are two-dimensional and

either TE or TM polarized. This implies that the local solutions to the scatte-

ring/penetration problems satisfies the homogeneous Helmholtz equation

j = 0, . . . , N : ∆uj + |kj|2uj = 0 , (1)
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where uj = Ej
z in the case of TE-polarized illumination and uj = Hj

z for a TM-

polarized incoming wave. Furthermore, |kj| = 2π
√

εj represents the magnitude of the

local wavevector under the normalization discussed in the above.

This system of Helmholtz equations, Eq.(1), must be solved subject to the con-

ditions that

uj−1(x, f j(x)) − uj(x, f j(x)) = −δj−1,0u
inc(x, f j(x)) , (2)

and

∂

∂n̂j u
j−1(x, f j(x)) − Cj

∂

∂n̂j u
j(x, f j(x)) (3)

= − ∂

∂n̂j δj−1,0u
inc(x, f j(x)) ,

at a general di-electric interface. The constant Cj takes the values

Cj =




1 TE Polarization

εj−1/εj TM Polarization

.

In the case where Γj represents a perfectly conducting object the conditions are

different for the two polarizations, i.e., we have a Dirichlet condition in case of a

TE-polarized wave

uj−1(x, f j(x)) = −δj−1,0E
inc
z (x, f j(x)) ,

while we recover a Neumann condition on the tangential magnetic field as

∂

∂n̂j

uj−1(x, f j(x)) = − ∂

∂n̂j

δj−1,0H
inc
z (x, f j(x)) ,

along the metallic interface in case the illuminating wave is TM-polarized.
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To complete the specification of the problem we require that the solutions, u0 and

uN , are bounded at infinity and that solutions consists of purely outgoing waves. The

means by which we enforce these conditions are closely related to the computational

approach chosen to solve the above system of coupled Helmholtz equations.

3. Boundary Variation Method

As we solve the general multiple interface problem as a sequence of single interface

problems we first discuss the single interface scheme in detail and subsequently con-

sider the extension to the general case.

A. Single interface scheme

Let us assume that we only have a single interface, Γ, separating the two homogeneous

regions, Ω+ = Ω0 and Ω− = Ω1, illuminated by a two-dimensional TE or TM polarized

wave. We take the amplitude of the illuminating TE or TM wave is 1.

The interface, Γ, is assumed to be L-periodic along x, and described by f(x).

Since the incident wave is a plane wave, the fields, u±(x), are endowed with a similar

periodicity, i.e.,

u±(x + L, y) = exp(ikinc
x L)u±(x, y) .

Following,15 we shall fix the notation by introducing

K =
2π

L
, αn = kinc

x + nK ,α2
n + (β±

n )2 = |k±|2 ,

where K simply reflects the wavenumber associated with the periodicity, αn represents

the Bragg condition for lattice refraction/reflection while the last condition expresses

energy conservation. In accordance with the orientation of the problem, see Fig. 1, we
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shall use the notation that β±
n ≤ 0 as the incoming wave propagates in the negative

y-direction. Also, to ensure boundedness of waves at infinity, we have that Im(β±
n ) ≤ 0

for the evanescent waves. Clearly there can only be a finite number of propagating

modes since for n being sufficiently large, β±
n becomes purely imaginary.

Away from the interface, Γ, we now express the solution, u±(x, y), as a Rayleigh

expansion

u±(x, y) =
∞∑

n=−∞
B±

n exp
[
i(αnx ∓ β±

n y)
]

.

Conservation of energy implies that

∑
n∈Π+

β+
n

∣∣∣B+
n

∣∣∣2 + C0

∑
n∈Π−

β−
n

∣∣∣B−
n

∣∣∣2 = kinc
y ,

where Π± represent the subset of β±
n corresponding to the propagating waves, i.e.,

β±
n ≤ 0 is real. For purely metallic scattering the second part of the sum drops out.

In this setting, the unknowns are the Rayleigh coefficients, B±
n , which depends

on the profile, f(x, d, θ). Following,3 we introduce a new profile

fδ(x) = δf(x, L) ,

i.e., δ = 0 corresponds to a flat horizontal interface, while δ = 1 represents the original

profile.

The heart of the boundary variation method introduced in3,4 is the assumption

that the Rayleigh coefficients, B±
n (δ), can be expressed as a Taylor series in δ,

B±
n (δ) =

∞∑
k=0

1

k!

dkB±
n (0)

dδk
δk =

∞∑
k=0

dk,nδ
k ,

i.e., we assume that B±
n , and hence u±, are analytic in the boundary variation, δ.
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The validity of this is by no means obvious but has nevertheless been established

rigorously in.2

To sketch the way by which one can obtain dk,n, let us consider the simplest case

in which Ω− is a perfectly conducting metallic object illuminated by a TE-polarized

plane wave, i.e., the boundary condition is

u+(x, fδ(x)) = − exp
[
ikinc

x x + ikinc
y δf(x)

]
.

¿From the Rayleigh expansion itself we have

1

k!

∂ku+

∂δk

∣∣∣∣∣
δ=0

=
∞∑

n=−∞
dk,n exp

[
i(αnx − β+

n y)
]

. (4)

We can, however, also evaluate the variation of u+ with respect to δ at y = 0 using

the boundary condition as

1

r!

∂ru+

∂δr

∣∣∣∣∣
y,δ=0

= −(iki
y)

r f r

r!
exp(ikinc

x x) (5)

−
r−1∑
k=0

f r−k

(r − k)!

∂r−k

∂yr−k

[
1

k!

∂ku+

∂δk

]
y,δ=0

.

Let us introduce the Fourier expansion of the periodic interface, f(x, L), as well as

powers of it as

f(x, L)r

r!
=

rF∑
l=−rF

Cr,l exp(iKlx) . (6)

Using Eq.(4) to evaluate the y-derivative of 1/k!∂ku+/∂δk we can, by combining

Eqs.(4)-(6), recover an explicit forward recurrence for the unknown expansion coeffi-

cients, dk,n, of the Rayleigh coefficients on the form

dk,n = −(ikinc
y )kCk,n +

k−1∑
r=0

min[rF,n+(k−r)F ]∑
q=max[−rF,n−(k−r)F ]

Ck−r,n−q(−iβq)
k−rdr,q .
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Hence, given all expansion coefficients, ds,t, and Cs,t, s < k, −sF ≤ t ≤ sF , we can

recover all expansion coefficients for s = k by forward recurrence.

Albeit of a more complicated form, similar recurrences can be derived for TM-

polarized illumination3 as well as for TE and TM polarized illumination of a general

di-electric interface.4 Recurrences for illumination by guided waves can be found in.6,7

While this yields an approach for computing the Taylor expansion of the Rayleigh

coefficients

Bn(δ) =
K∑

k=0

dk,nδ
k ,

it is generally not an easy matter to evaluate this expansion outside its circle of

convergence. To partially overcome this we express the Taylor series by its Padé-

approximation as

Bn(δ) =
a0 + a1δ + ... + aLδL

1 + b1δ + ... + bMδM
,

where the coefficients are found by standard means by requiring that it be equivalent

to the Taylor series for D = M + L + 1. In subsequent discussions we shall take

M = L = D/2. As it is well known, Padé-approximations have remarkably better

convergence properties than Taylor series1 and suffices for the present investigation.

With this in place, we can compute the Rayleigh coefficients of the global solution,

u±(x, y), at different angles of incidence, controlled by kinc, using only knowledge of

the Fourier representation of the interface, Γ.

B. Multiple interface scheme

Exploiting the linearity of the Helmholtz equation and considering a geometrical

optics series, the single interface scheme will be used repeatedly to form the scheme
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for multiple interfaces. The approximate solution for the single interface case is given

as a plane wave expansion

u±(x, y) =
q∑

n=−p

B±
n exp

[
i(αnx ∓ β±

n y)
]

. (7)

where n ∈ {−p, . . . , q} is the set of waves for which β±
n ≤ 0 is real. The non-

propagating waves are disregarded in the single interface case as we focus on modeling

of the far field. For other applications requiring detailed near-field information, these

evanescent waves could be included.

In the multiple interface scheme the solution for the first interface, Γ1, is computed

first. This is a sum of plane waves, Eq.(7), propagating away from the interface. The

waves traveling away from the multi-layer structure are not propagated any further.

However, the waves traveling down into the multi-layer structure are propagated to

the next interface by updating the phase by the phase factor exp(iβd). Here d is

the vertical distance between the interfaces. The single interface boundary variation

method is subsequently used on each of these propagated waves at the new interface.

As this process continues, a set of plane waves in each region is computed, the sum

of which gives the approximate solution in that region.

By conservation of energy there must be a finite number of directions in which the

waves can travel within each region, i.e., the multiple interface scheme only evokes

the single interface scheme a finite number of times. When the multiple interface

algorithm starts, the single interface scheme is called a finite number of times for a

wave of unit amplitude in all the possible wave directions to build an efficiency table.

When the single interface scheme is needed a lookup in the efficiency table based on
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the direction of the incident wave and the region it lives in produces the efficiencies

and directions of the refracted and reflected waves. The amplitudes of the refracted

and reflected waves are found by multiplying the efficiencies by the amplitude of

the incident wave. Using the fact that there is a finite number of possible waves the

method can group waves to limit the computations. The following section will make

this need apparent in order to make the approach computationally efficient.

C. Implementation

Let us first consider the example of a double interface structure, Fig. 2. The struc-

ture has a top interface, Γ1, which gives rise to three diffractive plane waves when

illuminated. The second interface, Γ2, is taken to be planar for simplicity. With the in-

cident plane wave, Einc(x, t), and the top interface, Γ1, the single interface boundary

variation method is used to compute the solution

E±(x, y) =
1∑

n=−1

E±
n ,

where

E±
n = B±

n exp
[
i(αnx ∓ β±

n y)
]

∀n ∈ {−1, 0, 1} .

We assume that the boundary variation method emits a solution which is the summa-

tion of three plane waves for the region Ω0 and three plane waves for the region Ω1.

To track the solutions the implementation employs a solution set, Sn, associated with

each region, Ωn. These are initialized to the empty set for n ∈ {0, 1, 2}. The solutions

are added to their respective sets S0 = S0 ∪ {E+
n }1

n=−1 and S1 = S1 ∪ {E−
n }1

n=−1.

The plane waves, {E+
n }1

n=−1, travel away from the interface and requires no further
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consideration prior to evaluating the far field. The remaining waves {E−
n }1

n=−1 are

traveling towards Γ2 and we propagate these waves by simply updating the phase.

For the wave, exp(iβ−
−1d)E−

−1, we need to solve the single interface problem at Γ2.

However, as Γ2 is a flat plane we use the Fresnel’s equations to compute the reflected

and refracted waves exactly, E−+
−1,0 and E−−

−1,0, respectfully. The waves are added to

the solution sets so S1 = S1 ∪ {E−+
−1,0} and S2 = S2 ∪ {E−−

−1,0}. The wave E−−
−1,0 is

propagating in the negative y direction away from the optical element and need not

be considered further. However, E−+
−1,0 is traveling towards Γ1 and eventually interacts

with Γ1 from below, i.e., the interaction is computed using the single interface algo-

rithm with the −f 1(x) profile. This process of collecting the solution waves from the

single interface boundary condition and propagating the waves in Ω1 to accounted to

multiple internal reflections is continued as long as needed.

For the general multi-layer problem with N interfaces, we initialize our method

with the region Ω0 and the incident wave Einc by adding (Einc, Ω0, T ttl) to the wave

set W 0. Here T ttl signify time-to-live as a measure of how the maximum number of

internal reflections a wave and its children can undergo. All of the solution sets are

initialized to the empty set, Sn = {∅}. Also let Dl =
∑l

j=0 dj where dj is the thickness

of the layer Ωj. With this notation, we must choose d0 = dN = 0.

To initialize the efficiency table we first note that in any given layer the local

Bragg condition is α = kinc
x +

∑N
j=1 |kj|2mj where mj is an integer for j = 1, 2, . . . , N .

Also for each region Ωj we have conservation of energy

α2 + β2 = |kj|2 .
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Recall that we only consider the waves for which β is real, i.e. there are a finite number

of waves in each layer and we can find all possible directions a wave will be traveling

in each layer using the Bragg conditions.

The single interface boundary variation code can be run for incident waves of

unit magnitude for each of these possible directions in each layer and the resulting

efficiencies are stored in a separate hash table for each layer. The key to the hash table

is the direction of the incident wave. In the case of an incident wave illumination a flat

plane interface the computations are simplified by using Fresnel’s equations17 instead

of the single interface boundary variation code.

Assume now that we are considering a wave that has undergone m bounces and is

scheduled undergo the next bounce. First note that E = A exp [i(αx + Cβy)], where

C = −1 if the wave is traveling in the positive y direction and C = 1 if the wave

is traveling in the negative y direction. For an element w = (E, Ωl, T ttl) from the

set of active waves, W n, this wave is propagated by updating the phase through

multiplication by exp(iβdl) and using the single interface method at the particular

interface with the initial wave E exp(iβdl). This yields the solution

u±(x, y) =
q∑

n=−p

E±
n ,

where

E±
n = B±

n exp
[
i(αnx ∓ β±

n y)
]

∀n ∈ {−p,−p + 1, . . . , q} .

Each wave is added to a set corresponding to each layer, i.e., Sl = Sl∪{exp(−CβDmax{l,l+C})E+
n }q

n=−p

and Sl+C = Sl+C ∪ {exp(−CβDmax{l,l+C})E−
n }q

n=−p.

Next we determine if we should add the newly computed waves to the set Wm+1
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of active waves. If the T ttl − 1 = 0 then the waves time to live is up and it is not

propagated further, i.e., no waves are added to the set. Alternatively, if a particular

amplitude is below a given threshold, wε, we can decide not to propagate this wave

any further.

Furthermore, if l+C ∈ {1, 2, . . . , N} then the waves ({E−
n }q

n=−p, Ω
−, T ttl−1) are

added to the set Wm+1. If C 
= 1∨ l 
= 0 then the waves ({E+
n }q

n=−p, Ω
+, T ttl − 1) are

added to the set Wm+1. When waves are added to the set Wm+1 it is first checked

if a wave with the same direction and region is already in Wm+1. If so then the

amplitude of the wave is added to the amplitude of the wave already in the set. If

there is no wave with the same direction in the same region then the wave is simply

added to Wm+1. Due to the conservation of energy, there are only a maximum of

M waves independent of m in Wm+1. Without this accounting for multiple waves at

similar direction of propagation, the number of active waves would grow exponentially,

rendering the computational work prohibitive.

The end of going from bounce m to m + 1 is reached when all the waves are

in Wm. To get the approximate multi-layer solution in the region Ωl we sum up the

elements in Sl.

It is possible to use the L2 difference in solutions of different T ttl’s at a few given

y-values near the interfaces to evaluate the convergence as a measure of accuracy. In

each region, Ωj, there is a solution set Sj which holds a finite number of waves, e.g.,

sj. We consider the error, ε, in energy by the relation for the scattering efficiencies

ε =
s0∑

l=1

e0
l +

ε0

εN

sN∑
l=1

eN
l − 1 , (8)
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where ej
l = βj

l |Bj
l |2/βinc is the efficiency and Bj

l exp
[
i(αj

l x + Cj
l β

j
l y)

]
is a wave in Sj.

Note that S0 does not include the incident wave and Cj
l = −1, 1 denotes the direction

in which the wave is traveling.

It is worth while emphasizing that a small energy deficiency, ε, does not imply

convergence to the correct solution but simply checks self consistency.

4. Verification and Convergence

In the following we shall attempt to validate the accuracy and general performance

of the proposed scheme for several different multi-layer two-dimensional optical el-

ements. When available, we shall compare with exact solutions. However, for more

interesting cases, these are not available and we compare against independently ver-

ified highly accurate solutions obtained with a spectral multi domain time-domain

code.8,10

A. Plane interfaces

In the case where all interfaces are planar the solution is known on analytic form17 as

uj = Aj
1 exp

[
i(αj

1x − βj
1y)

]
+ Aj

2 exp
[
i(αj

2x + βj
2y)

]
,

within each layer, assuming that the stack of layers is illuminated by a plane wave,

A exp [i(αx − βy)]. The unknown amplitudes are found by connecting the solutions

through the boundary conditions Eqs.(2,3) with A0
1 = AN

2 = 0. For the wave directions

we have αj
1 = αj

2 = α, |α| + |βj
1| = |kj+1| and |α| + |βj

2| = |kj|. This forms a linear

system which can be solved producing Aj
l for j = 0, . . . , N and l = 1, 2. We can then

compare the amplitude of the solution given by the exact solution, |Aj
l |, with the
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amplitude of the solution given by the multi-layer boundary variation scheme, |Bj
l |,

for j = 0, . . . , N and l = 1, 2 as a function of bounces.

1. Thin plate

For the first test we consider a normal TE wave of unit amplitude illuminating a thin

plate (see Fig. 3). We use Fresnel’s equations to solve the single interface problems

and take the wave amplitude threshold of wε = 10−15, i.e., all waves are allowed to

live for a maximum number of bounces.

In Fig. 3 we see that the solution, or rather the amplitudes, converges expo-

nentially fast in the number of bounces to the exact solution. The importance of

accounting for the internal reflections is evident even for this simple test case.

When comparing the solutions we look at the error in complex amplitude of the

waves in the exact solution Aj
l with the computed solution Bj

l . As we increase the

number of bounces, i.e., T ttl beyond 22 the error remains constant. This is because the

wave amplitude threshold wε is now fully responsible for terminative the the waves.

2. Thin plate stack

A further test of accuracy is illustrated in Fig. 4, reflecting a normal TE wave of unit

amplitude illuminating four thin plates stacked on top of each other. Again we use

Fresnel’s equations to solve the single interface problems since all of the interfaces are

planar and choose the wave threshold to be wε = 10−15.

This problem provides a test of the collecting of waves being propagated into the

set Wm+1 into a finite number of waves independent of number of bounces m. The

work to compute the solution increases linearly with the number of bounces because
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of this collection process.

As is clear from Fig. 4 there is exponentially fast convergence to the exact solution

as the number of internal reflections increases. We can compute down to machine

precision with 90 bounces in less than two tenths of a second on an average desktop

computer. For bounces greater than 90 the wave tolerance wε determines when the

waves stop propagating

B. Single curved interfaces

In the following we provide a few tests in which one interface is curved while all other

remain planar. For simplicity, and supported by the general verifications in the above,

we just consider the two-interface case. All results are compared to fully converged

results obtained with a high-order accurate full field solver.8,10

1. Shallow single curve

This problem consists of a normal TE wave of unit amplitude illuminating a thin

plate with one sinusoidal interface and a flat bottom as illustrated in Fig. 5. The

single interface interactions with the sinusoidal interface, Γ1, are calculated using a

[31/31] Padé approximant. The interactions with Γ2 are calculated using Fresnel’s

equations.

The wavelength-to-period ratio of Γ1 is small, 0.16, providing a simple test of the

multi-layer boundary variation code. While building the efficiency table, the single

interface boundary variation scheme is used 8 times to compute possible wave interac-

tions with Γ1 and the maximum error in the energy efficiency for the single interface
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cases is 1.33 × 10−15.

In Table 1 we increased the number of allowed internal bounces sufficiently to

ensure that the wave tolerance, wε, is the factor that controls when the waves stop

propagating. This table shows that the energy conservation from the single interface

scheme is kept as the number of bounces increase, i.e., there does not appear to be

severe problems of error accumulation.

To check the overall accuracy of the scheme, we illustrate in Fig. 6 and Fig. 7

the solutions obtained from the multi-layer code with results in a different manner.

We see in Fig. 6 the importance of considering the multiple internal reflections. In

Fig. 7 we have increased the number of internal reflections to ensure that waves are

propagated until their amplitude is below wε = 10−15, yielding excellent agreement

with the reference solution.

As one could expect, the multi layered boundary variation approximation be-

comes more accurate as the distance from the structure increases. This is a conse-

quence of not including the evanescent waves which remain in the reference solution.

The excellent agreement of the fields at different values of y confirms that the phases

of the fields are correct to a similar level of accuracy. This is confirmed by direct

comparisons which we omit for briefness.

2. Deeper single curve

To further test the algorithm, we consider a the case of a TE polarized wave illumi-

nating a two-interface problem in which the top interface is varies considerably more

than in the above case, see Fig. 8. In this case the wavelength-to-period ratio of Γ1
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is 0.5. The single interface interactions with Γ1 are calculated using a [49/49] Padé

approximant, leading to a maximum error in the efficiency for the single interface

cases of O(10−7).

As the number of internal reflections increased to ensure that it does not restrict

the propagation of the waves, the energy conservation is O(10−6). Thus, as in the

above simpler case, we find that the energy conservation of the multi-layer boundary

variation scheme is largely controlled on the maximum error in the efficiency for the

single interface cases.

In Fig. 9 we have increased the bounces large enough so that all waves are prop-

agated until the amplitude is below wε = 10−15. The agreement with the reference

solution is excellent and improves as one moves away from the structure.

C. Lens

As an example of a more general nonperiodic problem, we consider a Gaussian lens

being illuminated by a normal TE wave of unit amplitude. The setup is illustrated in

Fig. 10. Here f 1(x) = 0.5 exp(−x2) for x ∈ (−7.5, 7.5] and periodically extended. The

periodicity of Γ1 is set large enough so that its effect on the solution is small, thus

approximating a non-periodic surface. For the Fourier transform of Γ1, needed by the

single interface boundary variation scheme, we use 33 modes, and the solutions are

calculated using a [37, 37] Padé approximant. Since Γ2 is flat, Fresnel’s equations are

used to calculate the scattering and penetration.

The multi-layer boundary variation solution in Fig. 11 is for a sufficiently high

number of internal reflections to ensure convergence, i.e., is given for the amplitude is
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less than wε = 10−15. In this case the error in efficiency is 0.8. However, the comparison

with the direct solution reveals excellent agreement, in particular away from the lens.

D. Double curved interfaces

As a final test to illustrate the versatility of the developed scheme, we consider a

TE wave of unit amplitude illuminating a thin structure with two curved interfaces,

illustrated in Fig. 12. In this case, both Γ1 and Γ2 are sinusoidal and a [49/49] Padé

approximant is used to calculate the single interface interactions. The number of

internal reflections is sufficiently high to ensure that all waves are propagated until

their amplitude is below wε = 10−15

The results, shown in Fig. 12, show excellent agreement between the multi-layer

boundary variation scheme and the directly computed reference solution. The only

exception is y = −0.5. This can be attributed to the strong evanescent waves produced

by the two curved interfaces and the high contrast. Here the error in efficiency is

O(10−13).

5. Concluding Remarks

The main purpose of this work has been to develop an efficient and accurate compu-

tational approach to model multi layered optical elements, possibly with nonperiodic

profiles and arbitrary profiles at each interface separating layers of homogeneous non-

magnetic magnetic materials.

At the heart of the scheme is a very efficient boundary variation method for

accurately solving the problem of reflection and refraction by a single interface, be
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it material or metallic. The methods exploits the linearity of Helmholtz equation

along with the Bragg condition to significantly reduce the amount of space and time

needed to compute the solutions, consisting of numerous internally reflected waves.

A detailed understanding of the scattering processes allows us to collect the waves

into a finite set of active waves, limiting the otherwise exponentially growing set of

waves. Following a setup phase, tens-of-thousands of internally reflected waves can

subsequently be computed a very little additional cost.

In the cases presented here the evanescent waves produced by the single interface

boundary variation scheme are disregarded as we have focused on the solution away

from the grating structure. However, for other applications, one could include these in

a way similar to that used for propagating waves. Given that the kernel is the single

interface scheme, the limitations is set by this, i.e., in double precision arithmetic,

the depth-to-wavelength ratio of the variations of the interfaces can not exceed O(1).

Using extended precision can help on this although the cost typically increases also.

To check the accuracy of the multi-layer boundary variation code it has been ex-

tensively validated through direct comparisons with high-order accurate time-domain

solutions, showing excellent agreement, at a dramatically reduced cost as compared

to the direct solution.

While these results offer the first step in the development of a general high-order

accurate method for the efficient modeling of multi-layer diffractive optics, a number

of important issues remain open. Straightforward extensions include illumination by

Gaussian beams, by solving a sequence of problems subject to plane wave illumination,

and the use of the threshold wε to adaptively control the work and requested accu-
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racy. Extensions to the three-dimensional vectorial case is likewise straightforward,

following the developments in.5,7 This sets the stage for the use of such methods as

efficient and accurate forward solvers in an optimal design loop, as demonstrated for

the simplest metallic case in.13 We hope to pursue such developments in the near

future.
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List of Figure Captions

Fig. 1 Generic setup for scattering by a problem with multiple interfaces.

Fig. 2 Specific example to illustrate scheme for a problem with two interfaces.

Fig. 3 On the left is shown the problem setup for the test with one plane layer while the

right shows the decay of error in field amplitudes as a function of internal reflections

or bounces.

Fig. 4 On the left is shown the problem setup for the test with a stack of plane layers

while the right shows the decay of error in field amplitudes as a function of internal

reflections or bounces.

Fig. 5 Problem specification for a single layer with a shallow curved interface.

Fig. 6 Ez computed at different heights, y, with y = 0 corresponding to the vertical

position of the shallow curved interface. Illumination is TE-polarized at normal in-

cidence. Results are shown for a fixed number of internal bounces, and compared to

a highly accurate spectral solution, illustrating the importance of accounting for the

multiple internal reflections.

Fig. 7 Ez computed at different heights, y, with y = 0 corresponding to the vertical

position of the shallow curved interface. Illumination is TE-polarized at normal inci-

dence. Results are shown for converged solutions in terms of internal reflections and

compared to a highly accurate spectral solution.

Fig. 8 Problem specification for a single layer with a deep curved interface.

Fig. 9 Ez computed at different heights, y, with y = 0 corresponding to the vertical

position of the deep curved interface. Illumination is TE-polarized at normal inci-
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dence. Results are shown for converged solutions in terms of internal reflections and

compared to a highly accurate spectral solution.

Fig. 10 Problem specification for a single layer with an integrated lens.

Fig. 11 Ez computed at different heights, y, with y = 0 corresponding to the vertical

position of the integrated lens. Illumination is TE-polarized at normal incidence. Re-

sults are shown for converged solutions in terms of internal reflections and compared

to a highly accurate spectral solution.

Fig. 12 Problem specification for a single layer with two curved interfaces.

Fig. 13 Ez computed at different heights, y, with y = 0 corresponding to the vertical

position of the slowly varying interface. Illumination is TE-polarized at normal inci-

dence. Results are shown for converged solutions in terms of internal reflections and

compared to a highly accurate spectral solution.
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List of Table Captions

Table. 1 Convergence of scattering efficiencies and relation to threshold value, wε,

used in iterative approach.
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Fig. 6. Ez computed at different heights, y, with y = 0 corresponding to the
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at normal incidence. Results are shown for a fixed number of internal bounces,

and compared to a highly accurate spectral solution, illustrating the impor-

tance of accounting for the multiple internal reflections.
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wε e+
0 e+

1 e+
2 e−0 e−1 e−2 Total Efficiency - 1

10−3 0.0175 0.0443 0.0032 0.7082 0.0814 0.0018 −1.30 × 10−03

10−5 0.0167 0.0458 0.0057 0.7108 0.0828 0.0019 −5.34 × 10−05

10−7 0.0167 0.0458 0.0057 0.7110 0.0828 0.0019 4.84 × 10−06

10−9 0.0167 0.0458 0.0057 0.7110 0.0828 0.0019 −1.64 × 10−08

10−11 0.0167 0.0458 0.0057 0.7110 0.0828 0.0019 −2.98 × 10−10

10−13 0.0167 0.0458 0.0057 0.7110 0.0828 0.0019 3.81 × 10−12

10−15 0.0167 0.0458 0.0057 0.7110 0.0828 0.0019 −1.54 × 10−14

10−17 0.0167 0.0458 0.0057 0.7110 0.0828 0.0019 −2.22 × 10−16

10−19 0.0167 0.0458 0.0057 0.7110 0.0828 0.0019 6.66 × 10−16

Table 1. Convergence of scattering efficiencies and relation to threshold value,

wε, used in iterative approach.
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Fig. 9. Ez computed at different heights, y, with y = 0 corresponding to the

vertical position of the deep curved interface. Illumination is TE-polarized

at normal incidence. Results are shown for converged solutions in terms of

internal reflections and compared to a highly accurate spectral solution.
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Fig. 11. Ez computed at different heights, y, with y = 0 corresponding to

the vertical position of the integrated lens. Illumination is TE-polarized at

normal incidence. Results are shown for converged solutions in terms of internal

reflections and compared to a highly accurate spectral solution.
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Fig. 13. Ez computed at different heights, y, with y = 0 corresponding to the

vertical position of the slowly varying interface. Illumination is TE-polarized

at normal incidence. Results are shown for converged solutions in terms of

internal reflections and compared to a highly accurate spectral solution.
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